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A complete devil’s staircase in the Falicov–Kimball model
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Abstract. We consider the neutral, one-dimensional Falicov–Kimball model at zero
temperature in the limit of a large electron–ion attractive potential,U . By calculating the
generaln-ion interaction terms to leading order in 1/U we argue that the ground state of the
model exhibits the behaviour of a complete devil’s staircase.

In this letter we study the ground-state phase diagram of the one-dimensional Falicov–
Kimball model. This model was proposed to describe metal–insulator transitions [1] and
has since been investigated in connection with a variety of problems such as binary alloys
[2], ordering in mixed-valence systems [3], and the formation of ionic crystals [4]. It is the
latter language we shall use here, considering a system of static positive ions and mobile
spinless electrons. The model comprises no electron–electron or ion–ion interactions but an
on-site electron–ion attraction,−U .

We write the Falicov–Kimball model in the form

H = t
∑
j

(a
†
j aj+1+ a†j+1aj )− U

∑
i

(sj a
†
j aj − 1/2)+ (U/2− µi)

∑
j

(sj − 1/2)

+(U/2− µe)
∑
j

(a
†
j aj − 1/2) (1)

wherea†i (ai) denotes the fermionic creation (destruction) operator for a spinless electron,
si is equal to 1 (0) if sitei is (un)occupied by an ion,t is the hopping integral for electrons,
µi andµe are the chemical potentials for ions and electrons, respectively, andU is a positive
constant corresponding to the ion–electron attractive energy. The choice of a positiveU

is not restrictive since the transformation{U → −U ;µi → −µi; si → 1− si} maps the
Hamiltonian (1) onto the same system withU negative.

The ground state of the system is chosen by minimizing the energy per site over
all possible ionic arrangements. The structure of the ground states differs significantly
depending on whetherU is large or small compared tot . In the first case the electrons are
essentially localized near the ions and the latter tend to be as far apart as possible while,
for large t/U , the delocalization of electrons favours the formation of clusters of ions [5].
In this letter we consider the case whereU is very large compared to other parameters in
(1), and treatt/U as a perturbative parameter.

Despite the simplicity of the Falicov–Kimball model the determination of the ground
state is far from trivial. Numerical results [6] have suggested that in the neutral system,
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where the number of electrons and ions are equal, a large number of modulated phases
appear as ground states. In 1989 Barma and Subrahmanyam studied the phase diagram of
the model by mapping it onto an Ising system [7]. They showed that the phases appearing
at the first few stages of a perturbative analysis could be described in terms of a simple
branching rule, hence suggesting that the complete phase diagram might display a devil’s
staircase, an infinite sequence of commensurate (and possibly incommensurate) phases [8].
A different approach to the large-U limit was later introduced by Gruberet al [4] who
considered the model as a set of ions with interactions mediated by the electrons. They
calculated the two-ion interaction to leading order int/U on the basis of which they argued
that the ion spacing is constant in the ground state.

Here we show that a full determination of the ground state requires a calculation of
the generalm-ion interactions. These are obtained to leading order int/U using Green’s
function techniques. Then, using arguments first introduced by Fisher and Szpilka [8], we
deduce the existence of a devil’s staircase in the neutral Falicov–Kimball model. To our
knowledge this is the first quantum model which has been shown to have this behaviour.

The phase diagram fort = 0 is shown in figure 1. All the phase boundaries in the figure
are multi-degenerate in that any phase obtained by mixing the two neighbouring phases is
degenerate on the boundary. Our aim is to study systematically how this multi-degeneracy
is lifted ast/U increases from zero.

Figure 1. The phase diagram of the Falicov–Kimball model fort = 0.

It is convenient to introduce the variables

h ≡ (µi + µe)/2 1 ≡ (µi − µe)/2. (2)

U is assumed to be much larger than any physical parameter in (1) and therefore1/U � 1.
This restriction on1 has the important consequence of fixing the total number of electrons
equal to the total number of ions, and throughout the rest of the paper, we will implicitly
consider a neutral system,

∑
i ni =

∑
i si , whereni = a†i ai .

When moving along the lineµe = µi in figure 1 one notices that, for negative values
of h, the ground state corresponds to an empty lattice (ni = si = 0). On the other
hand, forh positive ni = si = 1. The pointh = 0 lies on the multi-degenerate phase
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boundary where all phases associated with an arbitrary spacing of the ions are degenerate.
To distinguish between the different degenerate states it is convenient to introduce the
labelling 〈n1, n2, . . . , nm〉 to denote a phase consisting of ions whose separations (measured
in lattice spacings) repeat periodically the sequencen1, n2, . . . , nm. (Hence the phases
ni = si = 1 andni = si = 0 can be described as〈1〉 and〈∞〉, respectively.)

The multi-degeneracy encountered on the phase boundaries of figure 1 is due to the
absence of interaction between the confined electrons. It is natural to expect that, for
t/U 6= 0, the hopping of electrons will introduce an effective coupling between the ions,
thus providing a mechanism for the removal of the degeneracy. This intuitive picture can
be formalized using the defect–defect interactions introduced by Fisher and Szpilka [8]. In
the present context, a defect corresponds to an ion. Following [8] the energy per lattice site
of phase〈n1, n2, . . . , nm〉 can be written asE〈n1,...,nm〉 = Etot/

∑m
i=1 ni , where

Etot = mσ +
m∑
i=1

V2(ni)+
m∑
i=1

V3(ni, ni+1)+ · · · (3)

and σ is the creation energy of an isolated ion,V2(x) denotes the effective interaction
between two ions at a distancex, V3(x, y) the interaction of three ions with spacings
x, y, and so on. Although, for simplicity, we refer to the ion creation energy and ion–ion
interactions, it must be borne in mind that each ion is associated with an electron.

When t = 0 the electrons are confined to the ions. In this caseσ is readily shown to
be equal to−2h. For smallt/U we expect each electron to be localized in a region around
the associated ion. Using standard perturbation theory one can obtainσ to leading order in
t/U

σ = −2h− 2t2/U +O(t4/U3). (4)

The leading-order corrections toσ are associated with a virtual process in which the electron
hops to the site to the immediate right (or left) of the ion and back again.

The general ion–ion interaction term,Vm(n1, n2, . . . , nm−1), can be obtained, at least
in principle, through a reconnection formula [9]. In terms of the four different ionic
configurations shown in figure 2, this formula is

Vm(n1, n2, . . . , nm−1) = EA − EB − EC+ ED. (5)

In the absence of electron hopping, equation (5) givesVm = 0 for all values ofm. Our aim
is to calculateVm to leading order int/U .

Figure 2. Ionic configurations needed to calculate them-ion interactionVm(n1, n2, . . . , nm−1).
In A there arem ions with successive separationsn1, n2, . . . , nm−1. In B the leftmost ion is
removed; in C the rightmost ion is removed; and in D both the leftmost and rightmost ions are
missing.
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We now illustrate how this method can be used to give a result forV2(n). To calculate
EA in equation (5) consider a system ofn+ 1 sites with ions at sites 0 andn. The single-
particle energies are determined by the eigenvalues of the(n + 1)-dimensional matrix,M,
where

Mij = −Uδi,j (δi,0+ δi,n)+ t (δi,j+1+ δi,j−1) (6)

and the other matrix elements are zero. Two of these energies occur near−U , and these
are the ones we want to sum over. So we write

EA = 1

2π i

∫
0

Tr[(zI −M)−1]z dz (7)

where the contour0 encloses the region nearz = −U and I is the identity matrix. To
evaluate the trace we expand the matrix inverse in equation (7) in powers of thet ’s. Define
a perturbationVij = tij (δj,i+1+ δj,i−1). Then

(zI −M)−1
ii = Gii +GiiVijGjjVjiGii +GiiVijGjjVjkGkkVklGllVliGii + · · · (8)

whereGii = [z − Mii ]−1 and we use the repeated index summation convention. We
therefore have established a one-to-one correspondence between terms in the expansion of
equation (8) and walks on the lattice which begin and end on the same sitei, in which
we associate a factortij = tj i with each step between sitesi and j and settij = t at the
end of the calculation. Note that any walk which does not include the two end sites of the
configurations in equation (5) will be eliminated by the subtractions in this equation. To see
this, suppose that the walk does not include the leftmost ionic site in configuration A. Then
the contribution of this walk in configuration A is the same as that in configuration B, and
that in configuration C is the same as that in configuration D. Therefore, such a walk has a
vanishing contribution to the right-hand side of equation (5). An equivalent formulation is
to say that contributions toVm only arise from terms in equation (8) which explicitly depend
on all the tij ’s in the configuration under consideration. Since we obviously only need to
focus on such contributions, we will introduce the notation [ ]′ to denote an expression that
includes only these terms. Thus, for instance, [EA]′ denotes only those contributions toEA

which involve all thetij ’s in the configuration being considered.
We now evaluate the terms in equation (8) which contribute to [EA]′ at lowest order

in t . If i is not an end site, in order to involve all thet ’s the matrix elements must either
(a) start ati, say, then increase to the highest number site (n), then decrease to the lowest
number site (0) and finally increase back to the original valuei or (b) initially decrease to
0, then increase ton, and finally decrease back toi. If i = 0 or n, however, note that the
index can only initially increase or decrease, respectively. So to leading order the terms in
EA which survive the subtractions of equation (5) are

[(zI −M)−1
ii ]′ ≈ CiG00GiiGn,n

n−1∏
j=1

G2
jj

n−1∏
j=0

V 2
j,j+1 (9)

whereCi = 1 if i = 0 or i = n and Ci = 2 otherwise. The product overG’s does
not include the end sites, because these, in general, only appear once. The starting site
appears an extra time and gives rise to the prefactorGii . The relevant term of ordert2n in
equation (8) is

[Tr(zI −M)−1]′ ≈ t2n
[

2

(z + U)3z2n−2
+ 2n− 2

(z + U)2z2n−1

]
. (10)
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Here the first term includesC1 andCn+1, both of which are unity. The factor 2n−2 comes
from

∑(n−1)
i=1 Ci . Substituting (10) into (7) and calculating the integral using residues gives

[EA]′ = 1

2π i

∫
0

t2n
[

2

(z + U)3z2n−3
+ 2n− 2

(z + U)2z2n−2

]
dz = (2n− 2)t2n/U2n−1. (11)

Next, to use the reconnection formula (5), we need to repeat the same calculation when one
of the end ions is removed (corresponding to configurations B and C in figure 2). In this
case

[Tr(I −M)−1]′ = t2n
[

1

(z + U)2z2n−1
+ 2n− 1

(z + U)z2n

]
.

The perturbative contributions toV2 are thus [EB]′ = [EC]′ = −t2n/U2n−1. Note than when
both ions are removed there are no longer any levels near−U . Hence [ED]′ = 0 and use
of the reconnection formula (5) gives

V2(n) = 2nt2n/U2n−1+O(t2n+2/U2n+1) (12)

as expected [4].
Fisher and Szpilka [8] showed that, for systems where the ion–ion interactions,Vm,

decay sufficiently rapidly with the defect spacings, a knowledge of the sign and convexity of
V2(n) can provide a considerable amount of qualitative information about the phase diagram
of the system. Their analysis can be applied in this context since theVm decay exponentially
with the spacings of the two outermost ions (because the ion–ion interaction is mediated
by the nearest-neighbour hoppings of electrons). Therefore, as a first approximation, we
shall analyse the phase diagram neglecting interactions that involve more than two ions.
Higher-order interactions will then be included successively to resolve the finer details of
the phase structure.

In the two-ion interaction approximation the ground-state configurations correspond to
equispaced electron–ion pairs. SinceV2(n) is always positive and convex, ash is varied
from positive to negative,n increases monotonically in steps of one lattice spacing [8],
giving rise to the infinite sequence of phases

〈1〉 → 〈2〉 → · · · → 〈∞〉. (13)

Equating the energy per site of neighbouring phases gives the position of the phase
boundaries and shows that the phase〈n〉 is stable over a region of width

1hn ≈ 1
2nV2(n− 1) ≈ n(n− 1)t2n−2/U2n−3. (14)

The original multi-degeneracy is not completely lifted byV2(n) because, on the boundary
between two phases,〈n〉 and 〈n + 1〉, all mixed phases where the ions can be separated
by distancesn or n + 1 are still degenerate. To determine the finer structure of the phase
diagram it is necessary to consider the effect of higher-order ion interactions.

The method outlined above can be extended to calculate them-ion interactionVm for
m > 2. As we shall show below,Vm(n1, n2, . . . , nm−1) depends, to leading order, only on
the separation of the two outermost ions in configuration A,n =∑m−1

i=1 ni . The result is

Vm(n) = (2n)!

(2m− 3)!(2n− 2m+ 3)!

t2n

U2n−1
. (15)

To prove this consider equation (8). Note thatm of the diagonal elements of(zI−M)−1 are
(z+U)−1; the rest arez−1. If the initial i corresponds to an ion, then a factor(z+U)2m−1
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appears in the trace; otherwise the factor is(z+U)2m−2. In the first case there arem choices
for i; two at the end withCi = 1 andm− 2 in the interior withCi = 2. Thus

Tr[(zI −M)−1]′ = t2n
{

(2m− 2)

(z + U)2m−1z2n−2m+2
+ 2n− 2m+ 2

(z + U)2m−2z2n−2m+3

}
. (16)

Again we stress that the dependence of (16) on the position of them ions in the chain is
only throughn, the distance between the two end defects. Substituting in (7) gives

[EA]′ = (2n− 2)!

(2m− 3)!(2n− 2m+ 1)!

t2n

U2n−1
. (17)

Similarly

[EB]′ = [EC]′ = [EA]′(2m− 3)/(2n− 2m+ 2) (18)

[ED]′ = [EB]′(2m− 4)/(2n− 2m+ 3). (19)

Finally, the use of the reconnection formula (5) gives for them-ion effective interaction,
Vm, the result (15). It should be pointed out that, in principle, the leading-order expression
(15) could be dominated by neglected terms of higher order int/U if n is sufficiently large
(for fixed t/U ) [8, 9]. However, Gruberet al [4] have shown that, form = 2, higher-order
corrections toV2(n) are dominated uniformly inn by the expression (15), provided thatt
is replaced bỹt = U [

√
U2+ 4t2−U ]/2t . On general grounds one expectsVm({ni}) to be

of order exp(−2nξ) whereξ is a correlation length with exp(−ξ) ≈ t/U . The replacement
of t by t̃ reflects the fact thatξ has a development as a power series int/U . Thus, it seems
plausible to expect that, upon renormalizingt in (15), their conclusion can also be extended
to m > 2.

We now consider how higher-order ion interactions modify the phase diagram obtained
in the two-ion interaction approximation. Consider firstV3. This has the effect of partially
removing the multi-degeneracy on the〈n〉|〈n+1〉 boundaries by stabilizing the mixed phases
〈n, n+ 1〉. This happens because the energy difference, of the mixed phase relative to the
pure phases, which is given by

(2n+ 1)E〈n,n+1〉 − nE〈n〉 − (n+ 1)E〈n+1〉 = V3(n, n+ 1)+ V3(n+ 1, n)− V3(n, n)

−V3(n+ 1, n+ 1) (20)

is negative. To see this, note that1E is essentially determined by the dominant term,
−V3(n, n) = −V3(2n) < 0. The mixed phase〈n, n + 1〉 has an ion density, 2/(2n + 1),
intermediate between the pure phases〈n〉 and〈n+ 1〉.

The stability of the two new boundaries appearing at this stage of approximation, namely
〈n〉|〈n, n + 1〉 and 〈n, n + 1〉|〈n + 1〉 can be determined similarly by considering four-ion
interaction terms. For simplicity, we consider the stability of the former phase boundary,
i.e. the one between the purer phases,〈n〉 and 〈n, n + 1〉, with respect to formation of the
mixed phase〈n, n, n + 1〉. In analogy with (20), we find the energy of the mixed phase
relative to the purer phases to be given by

(3n+ 1)E〈n,n,n+1〉 − nE〈n〉 − (2n+ 1)E〈n,n+1〉 ∼ −V4(n, n, n) < 0. (21)

Again the phase boundary is unstable to the appearance of the mixed phase〈n, n, n + 1〉.
Since all interaction potentials are positive, convex and exponentially decaying with the
separation of the outmost ions, we can conclude that, at every stage of the construction of
the phase diagram, the introduction of neglected higher-order interactions will lead to the
stabilization of mixed phases of increasingly long period. Note that in this argument, we
only need to invoke properties ofVm({ni}) for the case when eachni is eithern or n+ 1.
Our claim thatVm({ni}) is of order exp(−2

∑
i niξ) seems justified as long as the density
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is not too high, i.e. as long as we are discussing the hierarchical lifting of degeneracy for
the phase boundary between〈n〉 and〈n+ 1〉, whenn is not small.

To summarize, we have calculated the generalm-ion interaction potentials in the neutral
Falicov–Kimball model to leading order int/U at zero temperature. We thereby iteratively
construct the ground-state phase diagram and conclude that the ion density versus chemical
potential,h, has the form of a complete devil’s staircase.

Extending the strategy for the iterative construction of the phase diagram to more than
one dimension is not trivial and is the focus of an ongoing investigation.

JMY and CM acknowledge support from the EPSRC and ABH from the National Science
Foundation under grant 95-20175. We thank J J¸edrzejewski, R Lemansky, M Rasetti and
G Watson for useful discussions.
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